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Abstract— The phase screen method is a well established
approach to take into account the atmospheric turbulence in
astronomical seeing. This is of key importance when designing
adaptive optics for the new generation telescopes, in particular
when there is need to simulate long exposure phase screen
sequence. Turbulence is characterised statistically. A novel
approach is presented in this paper, to simulate turbulent phase,
based on the stochastic realization theory, which allows to take
into account the statistics to extend an existing phase screen
in time. The method is consistent with recently presented tech-
niques, and presents appealing properties in terms of accuracy
in reconstructing the structure function with a consistent saving
of memory.

I. INTRODUCTION

The quest for the ultimate frontier has always challenged

the human mind, both towards the microscopic world (from

the investigation on the atom structure to modern nanotech-

nologies, biomedical applications, quantum tecnologies) and

towards the immense dimensions of the outer space (one

example for all is the epic exploration of the solar system

throughout the 20th Century, from unmanned missions to

human-crewed expeditions [1]). With reference to the latter,

one most intriguing idea has always been that of seeing

beyond the human eye [2]. Since the ideal resolution of a

telescope (that is the capability of discerning two distant

light sources) is given by λ/D, with λ being the light

wavelength and D the telescope diameter, improvements

in space observations were obtained until the 1980s by

basically increasing the mirror size in reflecting ground based

telescopes, using monolithic mirrors and mechanical control.

The introduction of computer control brought a quantum

leap in the design of multiple mirror telescopes, and fur-

thermore, since power is nothing without control (resolution

power, in this case!), the use of modern control techniques

applied to Adaptive and Active Optics has paved the pathway

to the construction of the several meter diameter Very Large

Telescope (VLT [3]), and the design of a next generation tele-

scopes bearing the strikingly evocative name of Extremely

Large Telescopes (ELTs [4]) and OverWhelmingly Large

telescopes (OWL [5]).
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Industriali, Università di Padova, Stradella San Nicola 3, 36100 Vicenza,
Italy angelo.cenedese@dei.unipd.it

A. Active and Adaptive Optics

In these systems, the role of control is twofold.

The application of Active Optics technology allows to

replace the massive primary mirror with a very thin mirror,

or a segmented mirror, which can be kept in the correct

shape by actively adjusting an array of actuators behind the

mirror itself. The Active Optics system intervenes to preserve

the mirror optimal shape against static or slowly varying

environmental factors, such as manufacturing errors, gravity

due to telescope inclination, wind, thermal effects.

On the other hand, Adaptive Optics operate on a much

shorter timescale to compensate for factors that affect the

image at faster timescales (1/100th seconds or even less):

these are usually caused by the atmosphere and are not easily

corrected with primary mirrors, so that Adaptive Optics have

been developed for small corrective mirrors and recently

for secondary mirrors. Atmospheric distortions affect the

astronomical image with blurring: Adaptive Optics tries to

correct these effects by measuring the incoming light with a

wavefront sensor and consequently acting on a deformable

mirror until the image appears sharp.

B. Turbulence

The wavefront signal from a star object to a ground based

telescope is distorted along the light path proportionally

to the length of the optic path, and depending on the

encountered refraction index: because of this, the wavefront

detected at the telescope pupil is no more plane.

Turbulence is a nonlinear chaotic process. Turbulent fluc-

tuations in the wind velocities in the upper atmosphere mix

layers of differing temperatures, densities, and water vapour

content. As a consequence, the refraction index of each level

of the atmosphere fluctuates and the wavefront incident on

the telescope along an optical path that encounters these

fluctuations has spatial and temporal variations in phase and

amplitude. Across the diameter of large telescope the phase

errors are a few µm and dominate the degradation of spatial

resolution.

A possible way to model turbulence in the atmosphere

is the Kolmogorov theory [6][7][8] based on a statistical

description of the refractive index, temperature, and velocity

of the atmosphere. Kolmogorov started from the assumption

of a model based on what he described as an energy transfer

cascade. He also introduced inner and outer scales: Outer

scale is the largest size scale of the turbulent structure and is

related to the size of the structure that initiates the turbulence.

Inner scale is the smallest scale where turbulent energy

starts to dissipate due to viscous friction. Moreover, wind
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velocity fluctuations and the motion of turbulent structures

are approximately locally homogeneous and isotropic.

The spectrum of the refraction index is well modelled by

Kolmogorov theory only in a limited range of frequencies

(the so-called inertial range, which is the spatial range

between inner and outer scale), and when there is need

to extend predictions beyond this regime instead of the

Kolmogorov model the Von Karman spectrum is used, which

introduces a characteristic parameter called the wavefront

outer scale L0 leading to attenuation of the phase spectrum

at low frequencies. This model tends to the Kolmogorov one

when the outer scale tends to infinity.

In order to model atmospheric turbulence we make use of

the phase screen method. Pictorially, the phase screen is a

randomly inhomogeneous thin layer placed along the path

of propagation of a wave and affecting the wavefront with a

phase perturbation. In doing so, the phase screen introduces

a planar perturbation on an horizontal plane, and along the

vertical dimension the turbulence effect is modelled through

the insertion of a number of screens each contributing to the

overall phase perturbation [9].

From what explained it appears how the simulation of

such wavefronts is a crucial step in the design of modern

Adaptive Optics systems; in particular, some effort is devoted

to the generation of atmospheric phase screens for very long

exposures.

II. THE PHASE SCREEN SIMULATION PROBLEM

A. Problem Statement

The crucial question is: how do we choose the properties

of the phase screen such that it accurately models the

atmosphere?

The turbulent phase φ is generally described by means

of the structure function, which measures the averaged

difference between the phase at two points at locations r1

and r2 of the wavefront, which are separated by a distance

r on the aperture plane (Fig. 1),

Dφ(r) =
〈

|φ(r1) − φ(r2)|
2
〉

.

The structure function Dφ is related to the covariance func-

tion Cφ(r) = 〈φ(r1), φ(r2)〉, as:

Dφ(r) = 2
(

σ2
φ − Cφ(r)

)

, (1)

where σ2
φ is the phase variance.

According to the Von Karman theory, the phase structure

function evaluated at distance r is the following [10]:

Dφ(r) =

(

L0

r0

)5/3

c

[

Γ(5/6)

21/6
−

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

]

,

where K·(·) is the MacDonald function (modified Bessel

function of the third type), Γ is the Gamma function, L0 is

the outer scale, r0 is a characteristic parameter called the

Fried parameter [11], and c is a suitable constant 1.

1That is c =
21/6Γ(11/6)

π8/3

[

24
5

Γ(6/5)
]5/6

.

From the relation between the structure function and the

covariance (1), the spatial covariance of the phase between

two points at distance r results

Cφ(r) =

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

. (2)

We indicate with φ(u, v) a discrete square phase screen

of size m × m pixels, being 1 ≤ u, v ≤ m as seen by the

telescope pupil 2.

Without loss of generality we assume that the physical

dimension of each pixel is ps × ps[m
2] (therefore the phase

screen has a physical size of D = mps meters), although the

procedure described can be easily extended to the general

case of rectangular pixels. The rationale is that the phase

screen evolves in time by basically translating over the tele-

scope pupil with characteristic velocity, and the simulation

of this dynamics during very long exposures is obtained by

generating new columns of φ according to the atmospheric

turbulence statistics.

In this framework, the phase screen φ is treated as a

realization of an m-dimensional stochastic process Φ =
{φt : t ∈ N} that we assume to be wide-sense stationary.

This implies that the mean function mφ(t) = mφ(t +
τ),∀τ ∈ N is constant (mφ = 0, without loss of generality)

and the correlation function depends only on the difference

between the evaluation points Cφ(t1, t2) = Cφ(t1 + τ, t2 +
τ) = Cφ(t1 − t2, 0),∀τ ∈ N. Therefore, we consider the tth

column of φ, φt (that is φt = φ(:, t)), as the value at time t
of the stochastic process in the realization φ.

Fig. 1. Two points r1 and r2 at distance r on the aperture plane.

B. Stochastic Realization

The stochastic process Φ can be also represented as the

output y of a linear dynamical system in state space form,

that is yt = φt:
{

xt+1 = Axt + Ket

yt = Cxt + et
(3)

where et is a zero mean white noise process with covariance

matrix Σe = E
{

ete
T
t

}

= R. In (3), the state x and the

output y vectors have dimensions respectively n and m, and

A ∈ R
n×n, K ∈ R

n×m, C ∈ R
m×n.

The problem of finding a set of parameters {A,C,K,R}
such that the covariances of the process yt match a desired

2Where u, v are the Cartesian coordinates of a point on the square that
inscribes the aperture plane.
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covariance matrix Σy is called a stochastic realization prob-

lem [12][15][16][17][18][19][13][14].

Obviously, in the specific phase screen case, the covariance

of the stochastic process Φ is uniquely determined by the

theoretical covariances given by (2).

We define Λi as the expected value of the product between

two output samples yt+i and yt, Λi = E
{

yt+iy
T
t

}

, i =
1, · · · , 2ν−1, where ν is a design parameter in the procedure.

From the structure of the model (3), the calculation of the

square matrices {Λi} gives the following:


















Λ1 = CG
Λ2 = CAG
...

Λ2ν−1 = CA2ν−2G

(4)

where G = AΣCT + KR, and Σ = E
{

xtx
T
t

}

.

Furthermore, a commonly agreed assumption considers

that the phase screen translates in front of the telescope pupil

with constant velocity [20]. Being η the space traveled in

a sample period (proportional to the translation velocity),

the values of Λi are simply obtained from the covariance

function (2), recalling the zero-mean assumption for φt. In

other words:

Λi = E
{

yt+iy
T
t

}

= E

{

(φt+i − mφ) (φt − mφ)
T
}

= Cφ (iη) .

The Λi are used to construct the following Hankel matrix

(of size νm × νm):

H :=











Λ1 Λ2 · · · Λν

Λ2 Λ3 · · · Λν+1

...
...

. . .
...

Λν Λν+1 . . . Λ2ν−1











(5)

=











CG CAG · · · CAν−1G
CAG CA2G · · · CAνG

...
...

. . .
...

CAν−1G CAνG · · · CA2ν−2G











(6)

=











C
CA

...

CAν−1











[

G AG . . . Aν−1G
]

. (7)

Conversely, the H matrix can be factorized according to the

Singular Value Decomposition algorithm:

H = USV T = US1/2S1/2V T , (8)

with U, V unitary matrices, and S is a diagonal matrix whose

elements are the singular values of H . Hence, by comparing

(7) with (8), two matrices Ω and Ω̄ can be introduced to

obtain H = ΩΩ̄:

Ω := US1/2 =











C
CA

...

CAν−1











Ω̄ := S1/2V T =
[

G AG . . . Aν−1G
]

.

Note: the size of Ω and Ω̄ are respectively νm × n and

n × νm.

In a practical application of the method, most of the

singular values of H will be close to zero (Fig. 2), therefore

we can use the factorization of H even as a dimensional

reduction step considering only the first n̄ singular values

and setting the other ones to 0:

H ≈ Un̄Sn̄V T
n̄ = Un̄S

1/2
n̄ S

1/2
n̄ V T

n̄ = Ωn̄Ω̄n̄ (9)

where 





Un̄ = U(:, 1 : n̄)
Sn̄ = S(1 : n̄, 1 : n̄)
Vn̄ = V (:, 1 : n̄)

.

In this case, the following approximate relations stand:

Ωn̄ ≈











C
CA

...

CAν−1











(10)

Ω̄n̄ ≈
[

G AG . . . Aν−1G
]

. (11)
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Fig. 2. Plot of the singular values of the stochastic realization model. In the
case ν = 10, m = 64, hence the size of the A matrix before the reduction
step (and the number of the singular values) is νm = 640.

The solution to the stochastic realization problem is then

straightforward. The determination of C and G can be done

by inspection from (10)-(11), since:

C ≈ Ωn̄(1 : m, :)

G ≈ Ω̄n̄(:, 1 : m)

Also, A can be computed via least squares from (10)-(11):

defining

Ωu = Ωn̄(1 : (ν − 1)m, :) ≈











C
CA

...

CAν−2











Ωd = Ωn̄(m + 1 : νm, :) ≈











CA
CA2

...

CAν−1










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then

Ωd ≈ ΩuA ⇒ A ≈ Ω−L
u Ωd,

where (·)−L
indicates the left-inverse operator.

From the system equations (3) it is possible to write the

time evolution of Σt = E
{

xtx
T
t

}

:

Σt+1 = AΣtA
T + (G − AΣtC

T )R−1(G − AΣtC
T )T ,

and the steady state covariance matrix Σ is obtained by

solving the following Algebraic Riccati Equation (ARE):

Σ = AΣAT +(G−AΣCT )(Λ0−CΣCT )−1(GT −CΣAT ),
(12)

where the input noise covariance R is computed explicitly

from Λ0 − CΣCT .

Finally, the input gain K in the state equation is given by

the Kalman gain: K = (G − AΣCT )R−1.

The dynamical model (3) can be now used to synthesize

new realizations of the stochastic process φ (or to extend

in time an existing one). Indeed, given an initial state x0,

the synthesis of new values of y is obtained by simply

generating suitable samples of the input et (for example by

taking independent samples from N (0, R)) and updating the

state and output equations in (3).

To give a flavour of the procedure outcome for the specific

astronomical application, an example of such a realization

is shown in Fig. 3, where a sequence of phase screen is

reported.

Fig. 3. A sequence of phase screens. The picture serves to give some
intuition on how the phase screen actually simulates the presence of a
“turbulence pattern” over the telescope pupil.

C. The positivity condition

First let {A,C,G} be identified as described in Section

II-B and consider the finite covariance sequence:

{

Λ̄0, Λ̄1, Λ̄2, . . . , Λ̄2ν−1

}

(13)

where the matrices in the sequence are defined as follows


























Λ̄0 := Λ0

Λ̄1 := CG ≈ Λ1

Λ̄2 := CAG ≈ Λ2

...

Λ̄2ν−1 := CA2ν−2G ≈ Λ2ν−1

Then let us consider the infinite sequence

{

Λ̄0, Λ̄1, Λ̄2, . . . , Λ̄2ν−1, Λ̄2ν , . . .
}

(14)

of m × m matrices, obtained defining

Λ̄i := CAi−1G, ∀i ≥ 2ν .

The sequence (14) is called a minimal rational extension3 of

the finite sequence (13). The matrices of the sequence (14)

are supposed to be the covariances of the output process in

the dynamical system (3), however note that in general (14)

is not a covariance sequence: When (14) is a covariance

sequence it is called a positive sequence.

Actually, in this case, the main drawback of having

identified {A,C,G} possibly corresponding to a non-positive

sequence is that the Riccati equation (12) may have no

solution, so it may be necessary to take a different choice

for the state dimension n̄ and test again the solvability of the

Riccati equation.

However, it is also possible to slightly modify the re-

alization approach of Section II-B to ensure the positivity

condition [14].

Let T be the following Toeplitz matrix

T =



















Λ0 Λ1 Λ2 · · · Λν−1

ΛT
1 Λ0 Λ1

. . . Λν−2

ΛT
2 ΛT

1 Λ0
. . . Λν−3

...
. . .

. . .
. . .

...

ΛT
ν−1 ΛT

ν−2 ΛT
ν−3 · · · Λ0



















and let L be a Cholesky factor of T , that is L is a lower

triangular matrix such that T = LLT . Then we define the

normalized Hankel matrix as follows

Ĥ := L−1HL−T ,

hence

H = LĤLT . (15)

Similarly to what detailed in Section II-B, we factorize

Ĥ using the SVD (again the SVD can be used also as a

dimensional reduction step, i.e. considering only the first n̄
principal components):

Ĥ ≈ Un̄Sn̄V T
n̄ . (16)

So from (15), (16) and since (7) still holds, we can compute

C and G as follows:
{

C ≈ ρ1(H)L−T Vn̄S
−1/2
n̄

G ≈ (ρ1(H
T )L−T Un̄S

−1/2
n̄ )T

(17)

where ρ1(·) is an operator that selects the first m rows of a

matrix.

Furthermore let σ(·) be the shift operator, that, applied on

the Hankel matrix H , yields

σ(H) =











Λ2 Λ3 . . . Λν+1

Λ3 Λ4 . . . Λν+2

...
...

. . .
...

Λν+1 Λν+2 . . . Λ2ν











.

3Note that the minimal rational extension of (13) is uniquely determined
by {A, C, G}.
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From (15), (16) and










C
CA

...

CAν−1











A
[

G AG . . . Aν−1G
]

= σ(H)

we can compute A in the following way:

A ≈ S
1/2
n̄ UT

n̄ L−1σ(H)L−T Vn̄S
−1/2
n̄ (18)

This choice of the matrices {A,C,G} can sometimes be

more convenient than that of Section II-B, and indeed the

following proposition holds.

Proposition 1: Let Λi = Cφ(iη), ∀i and let A, C, G
be computed as in (17) and (18). Then, there is an integer

ν1 ≥ ν0 such that, for ν ≥ ν1 then
{

Λ̄0, Λ̄1, Λ̄2, . . .
}

is a

positive sequence.

The proof of Proposition 1 follows straightly from The-

orem 5.3 in [14] after introducing the hypotheses that hold

here.

D. The “Assemat et al.” Method

To validate the method and assess the correctness of

the procedure adopted, a recent work by Assémat and

colleagues [20] is chosen as a reference. In [20] the problem

of extending in time a phase screen of m × m pixels

is considered: This, again, translates into the problem of

adding new columns to the phase screen matrix. The solution

proposed starts from N “old” phase values piled to form a

vector z (of size Nm) and a random input vector β whose

components are independent gaussian signals with zero mean

and unitary covariance, which are linearly combined in a

dynamic relation to form the “new” phase values y:

y = Az + Bβ, (19)

where A and B are matrices of size m × Nm and m × m
respectively.

To obtain the system matrices A and B Assémat and

coworkers proceed by taking the covariances:

Σyz := E
{

yzT
}

= AE
{

zzT
}

(20)

Σy := E
{

yyT
}

= AE
{

zzT
}

AT + BBT (21)

From (20), being Σz := E
{

zzT
}

,

A = ΣyzΣ
−1
z ,

while from (21)

BBT = Σy − AΣzA
T ,

and hence the B matrix can be obtained resorting to the SVD

algorithm.

This approach can be revisited as a particular case of the

stochastic realization problem. By assuming the notation of

Section II-B, φt (y in (19)) is considered as the output yt of

the following dynamical model, and the state xt is obtained

by piling the vectors {φt, φt−1, . . . , φt−ν+1}:
{

xt+1 = Axt + Bwt

yt = Cxt
(22)

where wt is a white noise process with unitary covariance.

Being m be the dimension of the output and n = νm the

state dimension is, the process matrices A ∈ R
n×n, B ∈

R
n×m, and C ∈ R

m×n take the form:

A =

[

Ã1 Ã2

I(ν−1)m 0

]

=

[

Ã
I(ν−1)m 0

]

;

B =











B̃
0
...

0











;

C =
[

Im 0 . . . 0
]

,

noting that for the sake of simplicity the first m rows of

A can be compacted in the m × n matrix Ã, and B is

partiotioned accordingly (being B̃ of size m × m).

Let the output covariances Λi be defined as in (4), then

the state covariance matrix Σ is

Σ =











Λ0 Λ1 . . . Λν−1

Λ1 Λ0 . . . Λν−2

...
...

. . .
...

Λν−1 Λν−2 . . . Λ0











.

As suggested in [20], Ã can easily be computed via least

squares:

Ã =
[

Λ1 Λ2 . . . Λν

]

Σ−1.

Moreover, since the process is assumed to be stationary,

introducing matrix Q := B̃B̃T

Σ = AΣAT + BBT

=

[

Ã
I(ν−1)m 0

]

Σ

[

ÃT I(ν−1)m

0

]

+

[

Q 0
0 0

]

thus Q = Λ0− ÃΣÃT . B̃ (hence, B) can be computed from

Q, for example via SVD.

The synthesis process is substantially the same described

previously in Section II-B.

III. SIMULATIONS AND DISCUSSION

To begin with, we stress the fact that the methods de-

scribed can be successfully employed if the (wide sense)

stationarity assumption on the process φ stands. Furthermore,

the synthesis process requires the A matrix in the identified

model to be asymptotically stable: The procedure of Sec-

tion II-C ensures it, while this is general not true for that in

[20] (Section II-D).

Two more observations are now in order. First of all, the

amount of memory storage necessary for the synthesis of

new phase values φt is that required for storing the matrices

{A,C,K,R} for the dynamic model (3) and the system state

xt. Since the matrix dimensions depend on the size n of the

state vector, it is understandable how it is critical to keep

the state dimension quite small. To be more precise: Let ns

and na be respectively the state dimensions for procedures of

Section II-B (or II-C) and II-D, then the memory required by

the two procedures is respectively: 2n2
s+nsm+ns and 2n2

a+
na. Since na = Nm and in our simulations ns < m, then
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the stochastic realization approach requires approximatively
2
3N2-times less memory than the model by Assémat and

colleagues. Similar considerations can be done also for the

computational complexity of two algorithms.

Secondly, the parameter ν in both models (3) and (22)

corresponds to the number of covariances used in the model

identification step: Large values of ν leads to better approx-

imations of the dynamic behavior of the process. Therefore,

it would be sensible to choose a large value of ν.

As far as the comparison between the stochastic realization

approach (Section II-B,II-C) and the original approach in

[20] (Section II-D) is concerned, we observe that the state

vector in the model (22) is n = νm: The state dimension

grows linearly with ν, therefore there is a trade-off between

the two issues mentioned before. For the state vector to show

reasonable dimension, the ν parameter has to be kept small,

and indeed, in [20] it is 1 ≤ ν ≤ 4.

Conversely, one main advantage of the approach outlined

in Section II-B,II-C is that we can choose n and ν separately

and, thanks to the dimension reduction step in the SVD

factorization of H in (8), the state dimension n̄ will result

smaller than νm.

The results reported in [20] refer to typically small values

for ν. On the other hand, the beneficial use of the stochas-

tic realization approach should be more evident when the

method of [20] fail, that is when there is need for larger ν
values. To better clarify this point, we make the following

considerations: firstly, the covariance is a decreasing function

of r, thus the faster it decreases the smaller ν can be

taken (meaning that few sample covariances are necessary

to identify the model). Secondly, it can happen that even

if ν is small the covariances corresponding to the model

of [20] still (approximatively) match the true ones, that is

CÃiΣCT ≈ Λi, i > ν.

Finally, we report here some examples of the application

of the method proposed, comparing the results with those

obtained using the method of [20].

We have to stress that astronomers need phase screen sim-

ulations that reconstruct with high accuracy the theoretical

statistics of the turbulence and that the structure function

for hypothesis is spatially isotropic. Furthermore, since for

construction both the method of [20] and the stochastic

realization approach preserve the original statistics (almost

perfectly) along the vertical direction (see Fig. 4(a)), most

of the following examples will show the results along the

horizontal direction to verify the isotropic property of the

structure function.

The results reported in Fig. 4 are obtained setting the

values of the parameters to L0 = 20m, r0 = 8m, D =
16m, ps = 0.25m. For the method of [20], ν = 2 and

the corresponding dimension of the state is 128. Using the

procedure of Section II-B (that of Section II-C would take

to similar results) ν = 10, and the state dimension is

n = 60. We highlight that the model (3), with the parameters

identified as in Section II-B, has a much smaller state with

respect to that of the model of [20] (60 instead of 128),

however, it is evident how its output allows to obtain better
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Fig. 4. In solid line the theoretical phase structure function, in dashed and
in dash-dotted lines those obtained with the dynamical model of Section II-B
and the method of [20], respectively.

results in terms of estimation of the structure function, thanks

to the larger value of ν.

To conclude, we also explore the operative range of the

models produced with different turbulence conditions, by

varying the outer scale parameter L0 (basically, the size of

the largest turbulence structure) and the Fried parameter r0

(length-scale over which the turbulence becomes significant)

(Figs. 5-6).

IV. CONCLUSIONS

In this paper we have presented a new framework to

develop a dynamic model used to extend phase screen for

astronomical applications.
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Fig. 5. In solid line the theoretical phase structure function, in dashed and
in dash-dotted lines those obtained with the dynamical model of Section II-
B and the method of [20], respectively. Different values for the outer scale
L0 are explored: L0 = 16m (a), L0 = 64m (b).

On the one hand, we have shown how the stochastic

realization approach is consistent with previous work by

other scientists, in that the model by Assémat and colleagues

is re-interpreted in the general framework proposed.

On the other hand, the model produced using the stochastic

realization shows appealing properties of compactness, since

the state dimension results much smaller than the correspon-

dent one in [20], and at the same time provides better results

in terms of the reconstructed structure function.
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Fig. 6. In solid line the theoretical phase structure function, in dashed and
in dash-dotted lines those obtained with the dynamical model of Section
II-B and the method of [20], respectively. Different values for the Fried
parameter r0 with a telescope diameter D = 1m are explored: r0 = 0.3m
(a), r0 = 0.6m (b).
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